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AMPLIFICATION BY WAVE DISTORTION OF THE DYNAMIC 

RESPONSE OF VAPORIZATION LIMITED COMBUSTION 

by Marcus F. Heidmann 

Lewis Research Center 

SUMMARY 

The response of a combustion process to  acoustic oscillations which have distorted 
wave shapes is analyzed. A combustion process where burning rate  is proportional to  
an exponential power of a Reynolds number is assumed, and specific application is made 
to drop vaporization in rocket combustors. 

(components of the burning rate in-phase and out-of-phase with pressure).  The response 
is shown to  depend on the harmonic coefficients and phase angles in the Fourier se r ies  
used to describe distorted wave shapes. The analytical solutions a r e  compared with 
exact numerical evaluations. 

The addition of harmonic content to acoustic oscillations can increase the in-phase 
response factor by an order  of magnitude above that for  sinusoidal wave shapes. The 
largest increase occurs when the harmonic components and acoustic particle velocities 
are all in-phase. The out-of-phase response is zero  f o r  this condition, but with phase 
shifts it has a finite value. 

The effects of wave distortion on the response factors depend on the relative axial 
velocity of vaporizing drops. Large effects a r e  observed when relative velocities are 
l e s s  than about 30 meters  per  second o r  500 feet pe r  second. 

Analytical solutions a r e  derived for  the in-phase and out-of -phase response factors 

INTRODUCTION 

Nonlinear instability limits of rocket engine combustors are one of the least under- 
stood properties of unstable combustion. These limits are usually established by ex- 
ploding bombs of various s izes  within the combustor. The engine remains stable to a 
bomb disturbance below some threshold level, and self -sustained instability is triggered 
above that level. Although simple in concept, such stability rating has  uncertainties. 
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Bomb size alone is not the only variable. The type of bomb and its location also affect the 
results.  In addition, instability is occasionally tr iggered by a bomb which normally does 
not cause instability, or  it can be self-triggered by the combustion without bombs. The 
cause of instability and the variables affecting the stability l imits are of vital concern 
in  the design of high performance rocket engines. 

both the analysis of instability and t o  the design of stable combustors. Distorted waves 
(pressure wave shapes which depart from pure sinusoidal forms) are generated by the 
bombs that tr igger instability. Also, distorted wave shapes are usually observed during 
acoustic mode instability. The distortion usually increases with the amplitude of the 
oscillations. In the limit a shock wave o r  other highly nonsinusoidal wave form de- 
velops. Wave distortion, however, is not limited to  high amplitudes. Instability in some 
engines exhibits simultaneous resonance of several  acoustic modes - usually at harmonic 
frequencies - and distorted wave shapes a r e  seen at very low amplitudes. 

The effect of wave distortion on the acoustic amplification that can be expected from 
a drop vaporization process is examined. Steady combustion in liquid rockets is usually 
assumed to be vaporization limited, and the quantitative agreement between theory and 
experiment has been good (ref. 1). Vaporization-limited combustion is also expected for 
nonsteady combustion. Although this has been qualitatively confirmed, there  a r e  quan- 
titative deficiencies in theoretical analyses of the problem. Dynamic analyses of the 
vaporization process (refs. 2 and 3) show an acoustic gain that is insufficient to over- 
come acoustic losses and cause instability. .Acoustic oscillations with sinusoidal wave 
shapes were assumed in the previous studies; wave distortion was neglected. 

The importance of wave distortion in unstable combustion was first observed in 
studies with numerical models of the type developed by Priem and Guentert (ref. 4). 
These two-dimensional model studies of the combustor (both the combustion mechanism 
and the gas dynamics a r e  modeled) show that a drop-vaporization process can support 
unstable combustion. An explanation of the result is not obvious, and the validity of the 
result could be questioned. However, examining the detailed numerical computations 
showed that wave distortion could be very important. Although a sinusoidal disturbance 
is initially introduced, the pressure-time histories presented in references 4 and 5 show 
that this property is quickly lost and that the instability develops and grows into a dis- 
torted wave form. Acoustic gains extracted from the distorted-wave instability in refer-  
ence 5 are about three t imes la rger  than those obtained from the dynamic response of 
the same vaporization process to sinusoidal oscillations. These observations prompted 
the present study. 

Reynolds number is used. As such, the model generally characterizes convective heat- 
and mass-transfer processes,  and the results are qualitatively applicable to a variety of 

The purpose of this study is to demonstrate the importance of wave distortion to 

A vaporization model where burning rate  is simply related to some power of the drop 
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combustion mechanisms. This study, however, is specifically directed toward drop 
vaporization. 

analyzed. Approximate analytical expressions are derived for  both the in-phase and out- 
of-phase response factors (components of the burning rate in-phase and out-of-phase 
with the pressure oscillation). Solutions for some specific conditions of wave distortion 
a r e  presented, and the probable effect on unstable combustion is discussed. Exact so- 
lutions obtained by numerical techniques a r e  also presented. They show the precision 
obtained by the theoretical approach. Some of these numerical results have previously 
appeared in reference 6. 

The open-loop response of the vaporization process to  a variety of wave shapes is 

OPEN-LOOP MODEL 

The open-loop response of an assumed combustion process will be used to predict 
the acoustic amplification of the process within an unstable combustor. In such open- 
loop analyses the perturbation in burning rate caused by assumed acoustic oscillations 
a r e  evaluated. The response of the process is obtained by comparing the output (burning 
rate) with the input (acoustic oscillations). 

Combustion Process 

Precise modeling of a specific combustion process is not intended or necessary for  
the purpose of th i s  analysis. It wi l l  be shown that a combustion process where burning 
rate (mass o r  energy release rate pe r  unit volume), simply given by 

W = C1(Re)m = C l r T ) m  

is a functional relation particularly sensitive to wave distortion. 
appendix A. ) 

mass  -transfer processes that dominate many combustion mechanisms. Among these 
are the erosive burning of solid propellants and drop vaporization in liquid rockets and jet 
engines. Drop vaporization is particularly dominated by such Reynolds number de- 
pendence, and it will be emphasized in this analysis. For drop vaporization the burning 
rate is usually proportional to  the one-half power of the drop Reynolds number, m = 1/2. 

Priem and Guentert (ref. 4) used a vaporization model equivalent to that given by 

(Symbols are defined in 

A Reynolds number dependency (eq. (1)) characterizes the convective heat- and 
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equation (1) to obtain their  useful correlations for  nonlinear instability limits of liquid 
rockets. The approach they originally used will be followed. The gas viscosity 1-1 and 
the drob diameter D will be assumed to be constant. 

The relative velocity U in the Reynolds number (eq. (1)) introduces an important 
distortion-sensitive parameter.  For an axially moving drop in a cylindrical chamber, 
U is the magnitude of the relative velocity vector given by 

u 2 = I u z - u  I 2 2 2  + u o + u r  
2; 

Gas velocity oscillations in any of three vector directions affect the burning rate. 
Because of the greater  interest  in transverse-mode instability in rocket combustors, 
this analysis will be restricted to transverse-velocity oscillations. The axial-velocity 
difference For simplicity, the transverse ve- 
locities a r e  combined into a single transverse-velocity vector ut giving 

(uz  - uz I is assumed to  be constant. 

where 

2 2 2  
Ut = U8 + ur 

When a perturbed gas density is defined as p = P(1 + P ' ) ,  a burning rate normalized by 
the burning rate  without oscillations w/wo can be expressed as 

m/2 
w = - w = (1 + P)m [ 1 + (-?)"I 

wO 
(4) 

where 
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Equation (4) specifies the burning rate for any assumed t ransverse acoustic oscillation. 
As in reference 4, the process as modeled is insensitive to  the frequency of the oscil- 
lation. 

Actually, the response of the vaporization process is frequency dependent (refs. 2 
and 3). Figure 1 shows a typical response to  sinusoidal oscillations. (Response is de - 
fined on p. 6 . )  The peak value of the response denotes the most unstable condition. This 
peak value depends on the Reynolds number sensitivity of the process and is proportional 
to  the exponential power of the drop Reynolds number. Oscillations in drop diameter 
reduce the response at low frequencies, and oscillations in drop temperature reduce it 
at high frequencies. Without these frequency -dependent properties, this analysis will 
only show how this frequency-response curve is modified by wave distortion. It will 
show how much the response, particularly the peak value, could be amplified o r  atten- 
uated by distortion waves. 

Acoustic Oscillations 

The acoustic oscillations assumed for this analysis a r e  given by 

._ 

PI = pncos(nwt - cpn) 
n= 1 

M ._ 

P I  = Pncos(nwt - cp n 
n= 1 

ut = cun cos(nwt - cpn - on) 
n= 1 

The oscillating gas properties a r e  expressed as Fourier  s e r i e s  which can describe 
any wave shape. The phase angle cpn specifies the phase relation between harmonic 
components. This harmonic phase angle is assumed t o  be identical for  pressure and 
density, an approximation that is reasonably realistic. The gas velocity expression also 
contains this harmonic phase angle but is further modified by a velocity phase angle 0,. 
This velocity phase angle specifies the velocity-pressure phase relations. When 0, is 
zero,  the velocity and pressure are in-phase, and traveling wave properties are s im- 
ulated. For  standing acoustic modes, the velocity and pressure  are out of phase; .a 
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8, of 90’ simulates this condition. Some acoustic modes exhibit neither pure traveling 
o r  standing properties. 

Response 

Imposing the acoustic oscillations expressed as harmonic series on the combustion 
process causes a perturbation in the burning rate that can also be expressed as a har-  
monic ser ies .  An important parameter obtained from a comparison of such burning- 
ra te  oscillations with the acoustic oscillations is the portion of the burning rate that is 
in phase with the pressure  oscillations. Based on the Rayleigh criterion for  heat driven 
waves, this in-phase component gages with the ability of the process to  drive the acoustic 
oscillations. 

The in-phase component of the burning rate  will be called the nonlinear in-phase 
response factor, cRnz. It can be extracted from the burning rate and normalized by a 
correlation procedure (ref. 2) defined by 

f 2nW’ P’dwt 
(Rnz = Jo 

f ” (P?)’dut 

For rocket combustors, in-phase response factors  greater than some value ,etween . 8  
and 1 .0  will usually denote unstable combustion fo r  sinusoidal oscillations; that is, the 
oscillations will grow with time. Whether the same critical values apply to the growth 
of distorted waves has not been rigorously established. Intuition and an examination of 
the distorted wave instability with the Priem-Guentert model indicate that the same crit-  
ical  values apply. Without analytical proof at this t ime, a nonlinear in-phase response 
factor anZ of 0. 8 to 1 .0  will be assumed to discriminate between stable and unstable 
combustion. 

in combustor stability studies with sinusoidal waves. This out -of -phase component 
largely effects only the frequency of an unstable combustor. However, the exact role 
and definition of an out -of -phase response factor for  distorted waves also lacks analytical 
treatment. 

The portion of the burning rate that is out-of-phase with pressure is also important 

The nonlinear out-of-phase response factor ynz defined by 
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12' W' 2 pnsin(nwt - <pn)dwt 

f 2 *  (P')2dwt 

Jnz = ~ _ _ _ _ _  ._ -.. ~~ . 

will be used. The definition is similar  to  that used for  sinusoidal waves. This non- 
linear out -of -phase response factor Jnz together with the nonlinear in-phase response 
factor @nz are considered to  be an adequate characterization of the response of a pro- 
cess to  distorted acoustic oscillations. 

cisely couple the combustion process to  the gas dynamics. In linear analyses, where all 
oscillations have sinusoidal wave shapes, the relationship 

Response factors can be used in the linear analysis of combustor stability to pre- 

exactly specifies the coupling. 

precise coupling relation has not been established. 
can be formulated. This study is directed toward the approximation given by 

When distorted-gas dynamic waves cause distorted burning-rate perturbations, a 
However, approximate relations 

w' = (@nl + i jn2)P '  + residuals 

= (anL + i-fnl> p1 cos(wt - ql) + p2 cos(2wt - q2) + . . . [ 
+ pn cos(nwt - qn)] + residuals (9) 

With this approximation, the coupling is established by the two nonlinear response fac- 
t o r s  anZ and fnl, which will be discussed throughout this report. 

These nonlinear response factors a r e  in fact weighted averages of harmonic re- 
sponse factors that can be specified f o r  each harmonic component of the acoustic oscil- 
lations. For example, the nonlinear in-phase response factor given by equation (6) can 
be shown to be equivalent to  an average of the harmonic response factors given by 
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where the harmonic response factors  an a r e  specified by 

4 W'p, cos(nwt - cpn) do t  
. an = ~~ ~ 

cos(not - qn)] do t  

Another approximate coupling relationship, formulated by conventional methods of 
harmonic ordering, weighs the harmonic response factors in a different manner. The 
relationship formulated by such methods is 

W' = (a1 + iYl)pl cos(ot - ql) + (at, + i I2)p2 cos(2wt - cp2) + . . . 

+ (an + iJn)pncos(nwt - cp,) + residuals (12) 

With this approximation a ser ies  of harmonic response factors must be specified to  
establish the coupling between the gas dynamics and the combustion process.  
cussion of the harmonic response factors is given in appendix B. ) 

There is no rigorous justification for  the use of either of the coupling relationships 
presented, and others could also be formulated. The degree of precision obtained by 
any approximation will depend on the specific application and the method of handling the 
residuals . 

(A dis- 

THEORETICAL SOLUTIONS 

The method used to  obtain analytical solutions for  the nonlinear response factors 
will be described. A general solution will be derived. The composition of the general 
solution and the reasons for  the effect of distortion variables on response will be dis- 
cussed. 

Some additional simplifying assumptions will be made to describe the acoustic os- 
cillations. With these assumptions analytical solutions having greater utility a r e  ob- 
tained. These solutions will be used in the RESULTS AND DLSCUSSION section to des-  
cribe the effect of some specific variations in wave distortion on the response factor. 
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General Solution and Discussion 

Analytical solutions for  the response factors were obtained by assuming exponential 
notations to  simplify the mathematical procedures. The burning-rate expression 
(eq. (4)) combined with the assumed acoustic oscillations (eq. (5)) gives 

un i(nwt -cpn-On) un -i(nwt -cpn-en) 
x{1+ + -e  2 -e  2 2 

J J  [ Ln=1 

Two radical t e rms  appear in equation (13). Each was separately expanded by a 
Taylor se r ies .  However, the squaring of the harmonic function in  the radical t e rm on 
the right was performed before the expansion. Both radical t e rms  were expanded about 
their  t ime invariant quantities, and only the first t e rms  of the expansions were used. 

Multiplying the two expansions as indicated by equation (13) gives an expression f o r  
the burning rate  of the form 

w = W(1+ W') (15) 

The perturbation in burning rate  W' can be arranged in harmonic series given by 

n=l  r=l 

which is of the same form as the pressure perturbation 

00 

i(nwt-cpn) -i(nwt-cpn) 
P ~ = ~ ~  [e + e  1 

n= 1 
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In equation (16) the A t e r m s  are generated by the c ross  product of the pressure  
n,  r 

and velocity coefficients pn and un. The a 
the harmonic and velocity-pressure phase angles 'pn and On. 

tion indicated by equation (7), which involves the product W'P'. 
gration gives 

t e r m s  are sums and differences of n, 3.- 

The nonlinear in-phase response factor (Rnl is obtained by performing the integra- 
Performing the inte- 

#- 

lean, r -qn  + e  -(On, 

which can also be expressed as 

-- n=l  r=l 
an,? 

A solution for GInl where acoustic properties higher than the second order  in har- 
monic content and cross  products of harmonic coefficients higher than fourth order  a r e  
neglected is given by 

In this solution q1 = 0 has been assumed; that is, all phase angles have been refer-  
enced to the first harmonic pressure oscillations. 

Some qualitative interpretations of equation (19) a r e  possible. The response is 
basically proportional to the exponent m on the Reynold's number in the burning-rate 
expression. The solution consists of two major divisions: t e rm 1 and t e rms  2 to 8. 
Term 1 is comparable to  the solution obtained by linear (sinusoidal perturbation) analy- 
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sis. Its value is close to  one and it is insensitive to  variations in acoustic properties 
when Pn = - p,. 

The t e rms  within the bracket are the primary contributions of wave distortion to  
the response. Their effect on the response factor increases with a decrease in the 
steady axial-velocity difference hV. All these t e rms  depend on the phase relations used 
to  describe wave distortion. Maximum values a r e  obtained for  zero  phase angles (i. e . ,  
velocity in -phase with pressure  and no phase displacement between harmonic compo- 
nents). The response factor is amplified by wave distortion for such in-phase acoustic 
properties. Attentuation occurs for  certain combinations of phase angles that give large 
negative values for  the cosine functions. 

cause of their  lower order  in c ross  products of the coefficients. Term 2 arises because 
the product of the f i rs t -  and second-harmonic velocity components produces a first - 
harmonic component in the burning rate. This harmonic can be in-phase with the ' f i rs t -  
harmonic component of the pressure  oscillation. In te rm 3 the square of the first har -  
monic t e rms  of the velocity produces second-harmonic burning-rate components, which 
can correlate with the second-harmonic pressure component. Terms 4 t o  6 ,  although 
high order ,  can be interpreted in a similar manner. Although not so  arranged, equa- 
tion (19) is composed of first- and second-harmonic responses 6il and (R2, which com- 
bine to give the nonlinear in-phase response (Rnl. The contributions to 6il and (R2 can 
be recognized by the respective pressure  coefficients p1 and p2 appearing in t e rms  2 
to  6 .  

the numerator in equation (7) and is basically the square of the r m s  pressure oscillation. 
Term 8 is related to  the mezn value of the burning rate,  where 

1 
Y 

Terms  2 and 3 are the major contributions of wave distortion t o  the response be- 

(Appendix B gives solutions for  (Rl  and 6i2.) 
Terms  7 and 8 can be considered to be normalizing factors. Term 7 arises from 

m/2 - w = [ 1 + : (u; + .;)I 2 AV 

The mean burning rate and te rm 8 increase with an increase in the amplitude of the 
velocity oscillations, but is independent of the pressure amplitude. 

Specific Solution 

The general solution given by equation (19) can be expressed in a form that is more 
conveniently used to  examine some specific oscillating conditions. Some interrelations 
between acoustic gas properties are assumed for  this purpose. The gas density per-  
turbations a r e  assumed to be proportional to the pressure  perturbations such that 
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Vn = pn. This equation is usually valid only for  small  perturbations. Also, the co- 
efficients of the gas velocity expressions are assumed to  be proportional to  the pressure  
such that y~ = J p This is also adopted from small  perturbation theory. The pro- 
portionality constant Jn is equal to  one for  weak traveling waves. 

With these restrictions and definitions and making specific application to  drop va- 
porization where m = 1/2, equation (19) becomes 

n n n' 

Evaluations of equation (20) are used in the RESULT AND DISCUSSION to examine the 
effect of wave distortion on the response. 

s imilar  to that used for  the (RnZ solution. The result  for  yPn = pn, yun = Jnpn, and 
A solution for the nonlinear out -of -phase response Ynz can be obtained by a method 

m = 1/2, a solution comparable to  equation (20), is 

+ 

This out-of-phase response is zero  when the phase angles are zero,  that is, when 
pressure-velocity and the harmonic components a r e  all in-phase. At other phase angles 
it varies inversely with the relative axial gas velocity, s. Most of the t e rms  in equa- 
tion (21) a r e  s imilar  to those f o r  cRnI in equation (20) except for  a sine and cosine inter-  
change of the phase angle functions. This comparison of equations (20) and (21) shows 
that a change in the in-phase property of a burning-rate perturbation causes a com- 
plimentary change in the out-of -phase property. 

N UMERl C A L S OLUTl ON S 

The analytical solutions for  the response factors  derived in the previous section are 
approximate because (1) Taylor se r ies  expansions were used and (2) some higher order  
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cross  products of coefficients were neglected. Exact solutions, which do not have these 
limitations, were obtained by numerical techniques for  the conditions described in the 
RESULTS AND DISCUSSION section. These exact solutions, when compared with the 
analytical solutions , show the overall precision of the more readily evaluated analytical 
expressions. 

oscillations, and the response expression f o r  exact solutions on a digital computer. The 
solutions were restricted to  the conditions that apply to the analytical solutions given 
by equations (20) and (21). The expressions used are as follows: 

Burning rate - 

Numerical solutions were obtained by programming the burning rate , the acoustic 

Acoustic oscillations - 

I p2 P’ = PI cos wt + - cos(2wt - ‘pa) [ 
p2 P - - cos wt  + - cos(2wt - cp 

r - P ’  Y I P1 

Numerical integration of equations (7) and (10) gave the response factors annl and Jnz. 

RESULTS AND DISCUSSION 

The results to  be shown and discussed will be those for  a combustion process where 
w = 
bustors. The variables which describe the distortion of acoustic oscillation will be ex- 
amined. Generally, the independent effect of wave distortion variables on the response 
of the process will be shown. 
portance of wave distortion in unstable combustion. 

This process applies most directly t o  drop vaporization in rocket com- 

The purpose of the discussion is to  demonstrate the im- 
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Harmonic Content 

The effect of varying the amount of second harmonic content on the nonlinear in- 
phase response 6?nz is shown in figure 2. The effect on pressure  wave shape is also 
shown. For the conditions of figure 2 all the phase angles are zero; that is, there is no 
phase displacement between harmonic components and a velocity in-phase with pressure  
and density. The relative axial Mach numb.er t e rm h V / c J 1  is 0.02, which is a rela-  
tive drop velocity in rocket combustors of about 30 meters  p e r  second (100 ft/sec). 

The in-phase response exhibits optimum properties as a function of both pressure 
amplitude and second harmonic contents. Maximum response occurs at an amplitude of 
about 0.02 for a second-harmonic to  first-harmonic amplitude ratio of about 0.8. One 
of the reasons for  the low response at higher amplitudes is the increase in mean burning 
rate with amplitude. Increasing the mean decreases the relative s ize  of a perturbation 
and reduces the response (see appendix C f o r  mean values). 

The significance of the response values shown in figure 2 can be gaged by a compari- 
son with the p2/p1 = 0 curve in figure 2.  The p2/p1 = 0 curve is the response to  sinus- 
oidal waves and is shown to  be relatively insensitive to  pressure  amplitude. The r e -  
sponse is about 1 / 2 y  (the value obtained by linear analysis), which is too low to cause in- 
stability in rocket combustors. Thus, distorting the acoustic oscillations with second- 
harmonic content can amplify the response by a factor of 10 above this linear value. The 
response is much la rger  than that needed for instability (i. e. , anZ is greater than 0.8 
to  1 .0 .  ) The contribution of the harmonic response factors a1 and a2  to the overall 
nonlinear response anZ is discussed in appendix B. 

tively low oscillation pressure amplitude of 0.02. This  amplitude is comparable to the 
usual combustion noise in rocket engines. It is possible that combustion instability could 
develop from distorted acoustic oscillations buried within the usual noise spectrum of 
the engine. 

t ical  solutions overpredict the response by about 10 to 20 percent. The functional form 
of the solution, however, appears to  be correct. 

components as discussed thus far in  this report. This is particularly t rue for  high- 
amplitude combustion oscillations where the wave shape becomes highly distorted. A 
high-amplitude wave shape of special interest in rocket-engine instability is that f o r  the 
traveling transverse acoustic mode. High amplitudes f o r  this mode a r e  frequentily ob- 
served during instability with large rocket engines. 

The pressure wave for strong traveling acoustic modes has a characteristic shape 
which was experimentally examined and described in reference 7. The harmonic content 

For the conditions shown in figure 2., maximum amplification occurs at the rela- 

A comparison of the analytical and numerical results in figure 2 shows that the analy- 

Some types of wave distortion a r e  not adequately characterized by only two-harmonic 
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of increasingly higher orders  was needed to characterize wave shapes for  increasing 
amplitudes. The following relation approximated the behavior 

P’ = 2 py cos nwt 
n= 1 

where the maximum t o  minimum and mean pressure  amplitudes are given by 

and 

The following table shows the harmonic content and amplitudes: 

I 
0 . 0 1  

. 1  

. 3  

. 5  

3 2 4  

0 . 0 1  
. 1  
. 3  
. 5  

3’p 1 

0.0001 
. O l  
.09 
. 2 5  

p4’p1 

0.000001 
. O O l  
, 0 2 7  
. 125 

0.0071 

1 . 3 3  . 4 1  

Numerical solutions fo r  the response factors were obtained for these waves. As 
previously, the assumptions that ypn = pn, yun = Jnpn, and J = 1.0 were made. n 
results and typical pressure  wave shapes are shown in figure 3. The response increases 
with amplitude and assymptotically reaches a maximum value of about 1.08. 
iation with relative velocity will be discussed later. ) The response does not reach the 
peak value shown in figure 2 because the harmonic content for  these waves is very small  
at the pressure  amplitude of 0.02 where the peaks occur in figure 2. At this amplitude, 
p2/p1 is only 0.02 for  these traveling mode waves. Also, the response does not fall at 
high amplitudes as in figure 2 because higher order  harmonic components contribute to 
the response in this region (see appendix B). The maximum response of 1.08 (about 

The 

(The var-  
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2.5  t imes the linear value) could cause unstable combustion. The harmonic distortion 
which grows with amplitude, therefore,  is a potential cause of instability in rocket en- 
gines. 

bility observed both experimentally and with the numerical model studies of Pr iem and 
Guentert (ref. 4). When disturbances of increasing amplitude are introduced in  a com - 
bustor the harmonic content can be expected to  grow with amplitude. At some amplitude 
there  is sufficient harmonic content t o  give an in-phase response that can cause insta- 
bility (Bnz greater  than 0. 8 to  l. 0). It appears that Pr iem and Guentert's numerical 
model studies depended on this  amplification caused by wave distortion. It is probable 
that instability in rocket engines can be triggered by bomb pulses when they initiate os-  
cillations with sufficient harmonic content. 

Figure 3 also shows analytical results obtained from equation (20). The substitution 
p2 = (pl) (from eq. (22)) was used and t e rms  of a higher o rde r  than p1 were neglected. 
This,  together with the assumptions already stated, gives the result 

The results in figure 3 provide some insight into the causes fo r  tr igerable insta- 

2 2 

1 
2Y 
- 1 +  1 

This solution good to  second order  in harmonic content and amplitude coefficient 
agrees  favorably with the exact solution for multiharmonic wave shapes. Some addi- 
tional evaluations showed that deductions with regard to  phase relations can also be 
made for these multiharmonic wave shapes on retaining angles in the derivation of 
equation (25). Also, a solution f o r  YnZ for  strong traveling waves can be deduced 
from equation (21). 

Pressure-Velocity and Harmonic Phase Relations 

The amplification caused by wave distortion depends on both the phase relation be- 
tween the first- and second-harmonic components 'pn and the phase relations between 
pressure and velocity On. The solutions for  the response factors show that phase angle 
effects are not separable in either equation (20) for  Bnz o r  equation (21) fo r  jnZ. Many 
interacting effects are possible. The discussion of the phase relations will be limited to  
some of their  gross  effects. 

The independent effect of the harmonic phase angle on the in-phase response factor 
is shown in figures 4(a) and (b). The conditions are comparable to  figure 2, but nl 
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only a second to  first harmonic amplitude ratio of 0.2 is considered. The pressure-  
velocity phase angle is zero  (e, = Q2 = 0'). The in-phase response is shown to decrease 
fo r  any phase shift between harmonic components. When the phase shift is 90°, the re- 
sponse is reduced to near the linear value of 1/2y. Phase shifts of more than 90' can 
give negative values of the in-phase response. Negative responses imply highly stable 
combustion. 

Application of these harmonic phase-shift results to combustion instability is quali- 
tative because the phase -shift properties of actual waves have received little attention. 
Steep-front o r  shock-like waves contain a second harmonic component which approaches 
a phase shift of 90'. Such waves would not be as easily driven by the combustion pro- 
cess  as are the strong symmetrical wave shapes shown in figure 3 where there  is no 
harmonic phase shift. Phase shifts beyond 90' seem improbable except for some types 
of multimode resonance. Any method of producing large harmonic phase shifts, how- 
ever,  should contribute to combustion stability. 

u res  4(c) and (d). Any phase shift between harmonic components causes an out-of-phase 
response. 
phase-shift is negative, -fnz is negative. The result is unusual because out-of-phase 
responses in linear analyses appear only for time-dependent processes.  The signifi- 
cance of these out -of -phase responses from wave distortion remains t o  be established. 

The independent effect of the velocity-pressure phase relation on the in-phase re-  
sponse is shown in figures 5(a) and (b). Any phase shift between pressure  and velocity 
reduces the response, but the effect is much smaller than for  a harmonic phase shift. 
The maximum reduction occurs for  a 90' phase shift ,  but the response remains above 
the linear value of 1/2y. A velocity out-of-phase with pressure (e  = 90') characterizes 
standing mode resonance. The result implies that the standing mode resonance is not 
as easily driven as is the traveling mode resonance which exhibits in-phase velocity- 
pressure properties. 

Any phase shift between pressure  and velocity also causes an out-of-phase response 
to appear. This is shown in figures 5(c) and (d). InZ 

increments rather than the 180' increments found fo r  the velocity-pressure angles in 
figure 4 .  

the velocity-pressure phase angle is 90'. This simulates the growth of shock-like 
waves in standing modes. The velocity is assumed t o  be out-of-phase with pressure  
(e1 = O2 = 90') because of the standing mode property. An increase in the phase angle 
between the harmonic components provides the wave steepening property. Figure 6 
shows the effect on both anZ and Inl. The effect of the harmonic phase angle on anZ 
is similar  to that when the pressure-velocity phase angle is ze ro  (fig. 5). A harmonic 

' 

The effect of harmonic phase shift on the out-of-phase response is shown in fig- 

t When the phase shift is positive, the response JnZ is positive; when the 

The response is zero  at 90' 

One condition of practical interest  is an increase in the harmonic phase angle when 
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phase shift of 90' (a limiting condition for shock-like waves) reduces the response to its 
linear value of 1/27. Higher harmonic components should also be introduced for  a 
complete solution for  shock-like waves. It is concluded, however, that steepening the 
wave reduces the response, which in turn acts to  limit the pressure  amplitude; that is, 
a wave steepens when it grows in amplitude until the acoustic gains represented by the 
in-phase response match o r  equal the acoustic losses. 

Relative Axial Velocity 

The velocity sensitivity of a Reynolds number dependent process is the pr imary 
cause of the large changes in response with wave distortion. For drop vaporization this 
velocity sensitivity is controlled by the steady relative axial-drop velocity o r  Mach num- 
ber  =/e. 
makes the process relatively insensitive to velocity oscillations and any distortion of 
such oscillations. 

figure 7. 
obtained by linear analysis. 
by wave distortion becomes appreciable only for relative axial Mach numbers less  than 
about 0 .1  (about 150 m/sec o r  500 ft /sec in rocket combustors). However, Mach num- 
bers  below 0 . 1  typify drop vaporization in many rocket combustors, and a significant 
increase in response due to  distortion can be expected. 

phase response for strong traveling waves with multiple harmonic components. 
these waves a decrease in the relative velocity decreases the pressure  amplitude needed 
to  obtain large response factors. 

The relative axial velocity was one variable examined by Priem and Guentert (ref, 4) 
in  their  numerical model studies of instability. They showed that the size of the dis- 
turbance needed to start instability decreased with a decrease in relative velocity. The 
same result is implied by figure 3. The pressure amplitudes needed fo r  instability 
(anL greater  than 0. 8 to 1.0) decrease with a decrease in relative velocity. 

which lead to  higher relative axial Mach numbers. For example, an average E / C  of 
about 0. 15  characterizes drop vaporization in a relatively small  contraction ratio com- 
bustor of 1 . 8 .  These smaller  contraction ratio combustors should be more stable, but 
stability is not assured. As shown in figure 3, an increase in relative Mach number 
merely increases the pressure disturbance that the process can tolerate and still remain 
stable. 

When this relative velocity is large, the vaporization rate  is large. This 

The effect of the steady relative axial velocity on the in-phase response is shown in 
For very large relative velocities, the response approaches the value of 1/2y 

4 

For the conditions used in figure 7, the amplification caused 

The effect of the steady axial velocity is also shown in figure 3 which shows the in- 
For 

The trend for large-scale liquid rockets is toward smaller contraction ratio designs 
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CONCLUDING REMARKS 

I 
~ This analysis using a simplified vaporization process has shown wave distortion to 

be an important variable in combustion stability. It can amplify the response of the pro- 

dictions. This effect of wave distortion on stability should pers is t  for a more precise 
vaporization model o r  for  any combustion mechanism where Reynolds number is a dom- 
inant variable affecting combustion rate. It appears necessary to direct more attention 
to the causes and effects of wave distortion to obtain a complete understanding of the un- 
stable combustion system. 

Various deductions about combustor behavior can be made from this study and com- 
pared with experimental evidence. But such comparisons must be qualitative for  sev- 

i e r a l  reasons. One, the analysis is incomplete. Only a simplified combustion process 
was examined, and no overall systems stability analysis was made. Two, conflicting 
experimental evidence is often found, o r  the independent effect of a particular param- 
e te r  is not conclusively established. Recognizing these limitations, the following a r e  
of interest: 

(1) Traveling mode resonance is more frequently encountered than standing mode 

( cess  beyond that needed for  unstable combustion and significantly affect stability pre-  ! 

1 
i 
-\. 

I ’  

I” 

__ . . . .  . . - __ ___~__ 
resonance. - Acoustic gains a r e  larger  for  the in-phase velocity-pressure properties of 
traveling waves than the out-of -phase properties of standing waves. 

(2) Pressure  amplitudes for  traveling mode instability a r e  usually la rger  than those 
for  longitudinal standing mode instability. - Acoustic gains are reduced by the steepening 
of the wave shapes, which develops naturally in longitudinal modes at relatively low am- 
plitudes. 

(3) Disturbances above some finite amplitude can trigger unstable combustion. - 
Acoustic gains increase with the increase in harmonic distortion, which usually grows 
with amplitude. 

than with - low contraction ratios. - Acoustic gains from distorted waves are larger  for 
the small  relative axial drop velocities usually found in large contraction ratio combus- 
tors .  

(5) Evidence of multimode resonance is common during the initial growth period of 
spontaneous instability. - Acoustic gains a r e  large at low amplitudes for waves distorted 
by two harmonic components. 

. .. . . - = . :  . ~ 
.- - .  

_ _ _ ~ _ ~ ~ _  

.~ ~ 

(4) Large contraction ratio combustors a r e  more prone to  t ransverse . . .  mode instability . .  . _ _  = .  

.~ .. - ... ~ . -  - . 

(6) Acoustic l iners with broad-band tuning a r e  most effective in suppressing insta- 
bility. - A reduction in harmonic content (from broad-band tuning) may be more effective 
in reducing acoustic gains than reducing only the fundamental oscillation. 

(7) The symmetrical - wave shapes of traveling t ransverse mode instability tend to  - _  - - 
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steepen as they approach ~~ a limiting amplitude. . .  - Acoustic gains decrease with wave 
steepening and eventually act to  limit the amplitude. 

SUMMARY OF RESULTS 

The response of a combustion process  to  acoustic oscillations distorted by harmonic 
content was analyzed. A combustion process where burning rate js proportional t o  an A 

exponential power of Reynolds number was assumed. Specific application was made to  
drop vaporization in rocket combustors where the exponential power is 1/2. The follow- 
ing resul ts  were obtained: 

1. Analytical solutions were obtained fo r  the in-phase and out-of -phase response 
factors  (components of the burning rate  in-phase and out-of-phase with the pressure  os- 
cillation, respectively). The solutions show the effects on the response factors of the 
harmonic amplitudes and phase relations, of the acoustic velocity amplitudes and 
velocity-pressure phase relation, and of a steady relative axial velocity. The analytical 
solutions show good agreement with exact numerical solutions. 

2. Harmonic content can substantially increase the in-phase response factor. The 
addition of a second harmonic component to  the acoustic oscillation can increase the re- 
sponse by an order  of magnitude above that f o r  sinusoidal oscillations. Higher order  
harmonic distortion (the type that normally grows with amplitude) can increase the in- 
phase response to 2. 5 t imes the sinusoidal value. 

velocity and pressure  affect both the in-phase and out-of-phase response factors. The 
in-phase response factor is a maximum when both the harmonic components and the 
velocity -pressure are in-phase. No out-of -phase response exists for  this  condition. The 
in-phase response factor is less than the maximum when either the harmonic components 
o r  the velocity-pressure are phase shifted. With phase shifts,  the out-of -phase response 
factor usually has a finite value. The effects of the harmonic component phase relation 
are la rger  than those for  the velocity -pressure phase relation. 

4. The relative axial velocity (of a burning drop in a combustor) controls the sensi-  
tivity of the process to  wave distortion. Distortion effects on both response factors are 
significant when the relative axial Mach number is less than about 0.1. 

vaporization process  to  acoustic oscillation. Changes in distortion can amplify or  sup- 

I 

. 

3. The phase relation between harmonic components and the phase relation between 

5 .  Wave distortion is a crucial property affecting the response of the drop- 
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pres s  the in-phase response factor and substantially affect the stability prediction of 
rocket combustors. Wave distortion should be carefully considered in the design of 
stable combustors. 

Lewis Research Center, 
National Aeronautics and Space Administration, I 

1 Cleveland, Ohio, January 6, 1971, 
128-31. 5- 
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APPENDIX A 

SYMBOLS 

harmonic coefficient for  burn- Uz 7 Ue , Ur 

ing rate perturbations 

proportionality constant 

speed of sound 

drop diameter 

out -of -phase response factor 
(harmonic and nonlinear) 

proportionality constant in 

ut 

- 
AV 

W 

W 

P n  = J n ~ n  

Reynolds number exponent 

harmonic order  
wO 

pressure 

r m s  pressure amplitude, 

pp:j2 n= 1 

harmonic coefficient for pres -  
sure  perturbation 

Reynolds number 

in-phase response factor 
(harmonic and nonlinear) 

time 

magnitude of relative drop 
velocity vector 

axial velocity of drop 

harmonic coefficient for t rans-  
verse  Mach number pertur- 
bat ions 

CY 
n, 

Y 

en 

P 

Pn 

gas velocity (axial, tangential, 
and radial) 

2 t ransverse velocity, (ue + 
1/2 

u:) 

luz - uz I 
relative velocity of drop, 

dimensionless burning rate 

burning rate (energy release 
per unit t ime and volume) 

initial burning rate  without 
oscillations 

harmonic phase angle for  burn- 
ing rate  perturbations 

ratio of specific heats 

harmonic phase angle for  
velocity-pressure relation 

gas density 

harmonic coefficients for  
density perturbation 

harmonic phase angle for 
pressure  perturbations 

gas viscosity 

frequency 

dimensionless perturbations, 
x' = (x - E)/Z 

mean values 
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APPENDIX B 

HARMONIC RESPONSE FACTORS 

In this appendix harmonic response factors are presented f o r  some representative 
conditions to  show the magnitude of their  contributions to  the nonlinear response factor.  

The expressions developed for the relation between the nonlinear and harmonic re- 
sponse factors (eqs. (8) and (11)) are 

I 

I 

* 

%lZ 
2 

n=l  

n= 1 

n= 1 

The nonlinear response factors are shown to be weighted averages of the harmonic re- 
sponse factors. 

Both analytical and numerical solutions for  the harmonic response factors were ob- 
tained. Analytical expressions for  the first - and second-harmonic response factors 
were obtained by a method s imilar  t o  that used for  the nonlinear response factors. The 
expressions for yPn = pn, J1 = J2 = 1.0, and m = 1/2 (comparable to  eqs. (20) and (21) 
for  the nonlinear response factors) are 
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1 

. . . .  -. 

Figures 8(a) and (b) show the in-phase response factors (R17 (R2, and (QnZ for the 
highest value curve in figure 2. 
velocity-pressure a r e  in-phase7 (=/a1) = 0.02 and p2/p1 = 0.8. 
and numerical solutions show Gitl to be la rger  than (Rnz and Gi2 smaller.  For this 
case of a relatively large amount of second-harmonic content, the weighted averaging 
gives a nonlinear response factor that is smaller than the first harmonic response factor. 

tent is reduced. This is shown in figures 8(c) and (d) for  p2/p1 = 0.2. The second- 
harmonic response factor is very large fo r  this condition. This makes the nonlinear 
response larger  than the first-harmonic response. The second-harmonic response is 
large because the process considered is a strong second-harmonic generator or  fre- 
quency doubler (see appendix C). When the second-harmonic content of the acoustic os- 
cillation is small, there  is a strong correlation between the burning rate and this second- 
harmonic content. Increasing the second-harmonic content of the acoustic oscillation 
does not cause a proportional increase in the second-harmonic content of the burning 

For  this condition the harmonic components and the 
Both the analytical 

The relation between response factors are reversed when the second harmonic con- 
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rate. This reduces the correlation and the second-harmonic response factor as ob- 
served in figures 8(c) and (d). 

The out-of-phase response factors exhibit a behavior s imilar  to  that f o r  the in-phase 
response factors. An example of one condition is shown in figure 9. This is comparable 
to  figures 8(c) and (d) in that the second-harmonic response is much la rger  than the 
first-harmonic response. The weighted averaging gives a nonlinear response that is 
slightly higher than the first harmonic response. 

1 

I 

I Higher order  response factors contribute to the nonlinear response for  waves with 1 
1 multiple harmonic content. This is shown by the numerical solutions in figure 10 for  

strong traveling waves. As the pressure  amplitude increases,  higher order  responses 
contribute to the nonlinear response and a constant value of nonlinear response is main- 
tained at high amplitudes. 
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APPENDIX C 

INSTANTANEOUS AND MEAN BURNING RATES 

The burning rate,  pressure,  and acoustic velocity oscillations for a typical condition 
considered in this study a r e  shown in figure 11. The burning-rate curve shows a large 
second-harmonic content even though the second-harmonic content of the acoustic oscil- 
lation is relatively small  (p2/p1 = 0.2). The process is basically a harmonic generator 
o r  frequency doubler. This causes the burning rate to  be highly distorted for any type of 
disturbance. When the pressure and velocity are not in phase (as in fig. ll), the burning 
rate  curve on the average is not in phase with the pressure  oscillation. Such burning 
rates  have both in-phase and out-of-phase components with respect to the pressure oscil- 
lation and the respective response factors &inl and -fnl assume finite values. 

The mean burning rate  of a drop vaporization o r  any Reynolds number dependent pro- 
cess  generally increases in the presence of acoustic oscillations. 

The analytical expression for the mean burning rate for  drop vaporization is given by 

I 

w =  - [ 1 + -  ;(cy)? (; u + u 2  2 ) y 4  

For ? / u ~  = Jnpn and yPn = pn, equation (Cl) becomes 

The mean burning rate is primarily dependent on the relative axial velocity and pres-  
sure  amplitude although large second-harmonic contents a lso affect the mean value. 

The effect of relative velocity and amplitude is shown in figure 12 for p2/p1 = 0.2,  
J1 = J2 = 1.0,  and y = 1 . 2 .  The mean burning rate can more  than double with an in- 
crease in pressure  amplitude, and at low relative velocities the mean can increase by a 
factor of 5 o r  more. These increases in the mean with amplitude reduce the relative 
s ize  of a given oscillation in burning rate and in par t  contribute to the decrease in re- 
sponse with amplitude shown in figures 2 and 4 to 7. 
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Figure 1. -Typical response of heptane drop vaporization to sinusoidal os- 

Characterist ic frequency, dimensionless 

ci l lat ions (ref. 1). 
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Figure 2. - Effect of amount of harmonic content o n  response and 
wave shape. Harmonic phase angle, p2 = Oo; velocity-pressure 
phase angles, = = Oo; relative axial Mach number, 
4.V/cJl = 0.02; spec1 IC heat ratio, 1.2; proportionality constant, 
J$J1= 1.0. 
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(c) Numerical solution. 

Figure 3. - Response and wave shapes for waves in st rong t ravel ing 
transverse acoustic modes. 
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Figure 4. -Effect of harmonic phase angle on  response. Relative 
axial Mach number, AVVlcJ1 = 0.02; specific heat ratio, y = 1.2; 
proport ional i ty constant, J $ J l =  1.0; harmonic  amplitude ratio, 
p$p1= 0.2. 
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Figure 5. - Effect of velocity-pressure phase angle on  response. 
Harmonic phase angle, 'p2 = 0"; relative axial Mach number, 
A V k J 1  = 0.02: specific heat ratio, y = 1.2; proport ional i ty 
constant, J2/J1 = 1.0; harmonic  amplitude ratio, p21p1 = 0. 2. 
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Figure 6. - Effect of  harmon ic  phase angle o n  response for a n  out-of-  
phase velocity-pressure. Velocity-pressure phase angles, O1 = O2 = 

90"; relative axial Mach number, AV/cJl = 0.02; specific heat ratio, 
y = 1.2; proportionality constant, J$J1 = 1.0; harmon ic  amplitude 
ratio, p$pl = 0.2. 
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Figure 7. - Effect of relative axial velocity o n  response. Harmonic phase angle, 'p2 = 0"; velocity-pressure phase 
angles, 
ratio, p2/p1 = 0.2. 

= = 0'; specific heat ratio, y = 1.2; proportionality constant, J2/J1 = 1.0; harmonic  amplitude 

34 



i 

In-phase 
response 
factors 

1 I 

I, 
I 

I 
I 

i 

! 

I 
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". - (b)  Numerical  solution for harmonic amplitude ratio p2/p1 = 0. 8. 
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Figure 8. -Comparison of harmon ic  and non l inear  in-phase responses. 
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(a) Analyt ical solution. 
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Figure 9. -Comparison of out-of-phase responses. Harmonic phase angle, 'p2 = 90"; velocity-pressure phase 
angles, €I1 = €I2 = 90"; relative axial Mach number, AV/cJ1 = 0.02; specific heat ratio, y = 1.2; harmonic  
amplitude ratio, p2/pI = 0. 2. 
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Figure 10. - Contr ibut ion of harmonic  responses to nonl inear  response for strong travel ing waves. Numerical 
solution. 
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Figure 11. - Numerical evaluations of b u r n i n g  rate, pressure, and acoustic part icle velocity 
perturbations. Harmonic phase angle, p2 = 45"; velocity-pressure phase angles, El1 = El2 
= 45'; relative axial Mach number, AV/cJ1 = 0.02; specific heat'ratio, y = 1.2; proportionality 
constant, J$J1 = 1.0; harmonic  amplitude ratio, p i p 1  = 0.2; harmonic  coefficient, p1 = 0.3. 
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